

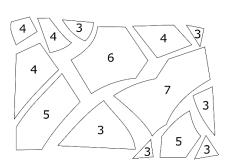
Réseaux de fissures

Les fissures qui se créent dans une plaque de glace lors d'un choc se développent à première vue à des endroits complétement aléatoires, afin de relâcher des tensions dans le matériel. Pourtant, à grande échelle, on observe que le réseau de fissures obtenu obéit à des lois statistiques surprenantes. En particulier, une de ces lois dit que

Le nombre de sommets des différents fragments vaut en moyenne 4.

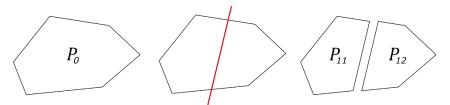
• Pour le réseau de fissures ci-dessous, nous avons par exemple

$$(4+4+3+4+5+6+4+3+3+7+3+5+3+3):14 = 4,07$$



Cette émergence de structure pour un réseau de plusieurs fissures s'explique par un raisonnement mathématique.

Supposons que la plaque de glace de départ soit représenté par un polygone P_0 . Appelons v_0 le nombre de sommets de P_0 .



Traçons alors une ligne au hasard qui bissecte P_0 en deux nouveaux polygones P_{11} et P_{12} ayant comme nombre de sommets v_{11} et v_{12} respectivement. Cette ligne représente une première fissure.

Notons par v_1 la moyenne de v_{11} et v_{12} :

$$v_1 = \frac{1}{2}(v_{11} + v_{12})$$

Comme $v_{11}+v_{12}=v_0+4$ pour n'importe quelle ligne (qui évite les sommets de P_0), nous concluons que

$$v_1 = \frac{1}{2} (v_0 + 4).$$

L'idée est maintenant de mesurer l'écart entre v_1 (resp. v_0) et 4 et de montrer qu'il devient de plus en plus petit. En retirant 4 des deux membres de cette équations, nous obtenons

$$v_1 - 4 = \frac{1}{2} (v_0 - 4).$$

Cette relation est une bonne nouvelle car elle nous dit que l'écart entre v_1 et 4 est la moitié de celui entre v_0 à 4.

En répétant ce processus avec d'autres lignes (représentant d'autres fissures) qui coupent le polygone, on montre que la moyenne du nombre de sommets se rapproche de plus en plus de 4.